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Abstract: The subtleties of correctly processing integers
confronts developers with a multitude of pitfalls that fre-
quently result in severe software vulnerabilities. Unfortu-
nately, even code shown to be secure on one platform can
be vulnerable on another, such that also the migration of
code itself is a notable security challenge.

In this paper, we provide a high-level overview of integer-
based vulnerabilities that originate in code which works
as expected on 32-bit platforms but not on 64-bit plat-
forms. The changed width of integer types and the in-
creased amount of addressable memory introduce previ-
ously non-existent vulnerabilities that often lie dormant
in existing software. To emphasize the lasting acuteness of
this issue, we empirically evaluate the prevalence of these
flaws in the scope of Debian stable (“Jessie”) and 200 pop-
ular open-source projects hosted on GitHub.

Keywords: Software security, Data models, Integer-based
vulnerabilities.

ACM CCS: Security and Privacy — Software and applica-
tion security

1 Introduction

The migration of software from one platform to another
may seem like a straight-forward task at first and, after over
10 years since 64-hit computing has reached the mass mar-
ket, one might expect that technical obstacles introduced
by 64-bit data models have long been resolved. Unfortu-
nately, the reverse is true. Over the past years vulnerabili-
ties solely induced by migration have been brought to light
across wide-spread and well reviewed software projects,
such as CVE-2005-1513 in gmail, CVE-2007-1884 in PHP,
CVE-2013-0211 in libarchive or CVE-2014-9495 in libpng.
On closer examination, the process of migrating program
codes presents itself as far more involved than it appears at
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a first glance. While the LP64 data model changes widths
of a few integer types only, these particular types are of-
ten used in the calculation of buffer sizes, offsets in mem-
ory, or the amounts of memory to copy from one location
to another [2, 5] and thus are especially critical in this
context. This is even aggravated by chains of type aliases
(cf. the typedef keyword in C/C++) and signedness is-
sues, which developers and even security experts often
are not aware of.

Let us, as an example of a real vulnerability, con-
sider the following simplified excerpt of a flaw in zlib ver-
sion 1.2.8:

int len = attacker_ controlled();
char *buffer = malloc((unsigned) len);

memcpy (buffer, src, len);

The functions malloc and memcpy define the number of
bytes to allocate and the number of bytes to copy, respec-
tively, as an integer of type size_t. Consequently, the vari-
able len is implicitly cast to the unsigned type size_t in
line 2 and 3 - such that this code is perfectly secure on all
32-bit platforms. However, if the code is compiled using the
LP64 data model (e.g., used by 64-bit Linux) line 3 evokes
asign extension as size_t there is defined as being 64 bits
wide. An attacker controlling the variable 1en can hence
overflow the buffer by providing a negative number. For
example, —1 is converted to 0x00000000f ffff£ffinline 2
but to OxfffffffffFf L1 in line 3, resulting in a buffer
overflow.

In this paper, we provide an overview of such 64-bit
migration vulnerabilities and summarize results presented
in [13]. On the basis of different minimal working examples
we demonstrate how (a) the changed widths of crucial in-
teger types and (b) the larger address space that is avail-
able on 64-bit systems may lead to severe security flaws.
To assess the prevalence of migration flaws in practice, we
conduct an empirical analysis and search for such issues
in the source code of 200 GitHub projects and all pack-
ages from Debian stable (“Jessie”) marked as Required, Im-
portant or Standard. We find that integer truncations and
signedness issues induced by 64-bit migration are abun-
dant in both datasets. For example, size_t alone, which
has a width of 64 bit under LP64, is truncated to 32-bit
types in 78% of all Debian packages. Although the vast
majority of these issues are not necessarily vulnerabilities,
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the sheer amount indicates that developers are unaware
of the subtle changes resulting from migrating code to
LP64.

The rest of this article is organized as follows: We
systematically describe 64-bit migration vulnerabilities in
Section 2. In Section 3 we present an empirical study on
the prevalence of this unique class of vulnerabilities and
discuss our findings in Section 4. Section 5 concludes the
article.

2 Systemization

In the following, we first address different data models de-
ployed over the years (Section 2.1) before we characterize
different types of vulnerabilities that emerge when compil-
ing code for a 64-bit data model that securely runs on 32-
bit platforms. These vulnerabilities can be categorized by
two generic sources of defects: changes in the width of in-
tegers (Section 2.2) and the larger address space available
on 64-bit systems (Section 2.3).

2.1 Data models

A data model defines the width of integer types for a spe-
cific platform. Table 1 provides an overview of common
data models used in the present and past, exemplary op-
erating systems using them, as well as the number of bytes
assigned to each type. For all models, the width of pointers
and the size_t type correspond to the architectures’ reg-
ister size, e.g., IP16 and LLP64 specify the size of pointers
as 2 byte and 8 byte, respectively.

The motivation behind the different definitions of ba-
sic integer types lies in preserving their relations as good
as possible when migrating code between data models.
Due to our focus on the transition from 32 bit to 64-bit,
ILP32 serves as a reference point in this paper, as it is
used on most 32-bit architectures. That is, we assume that
a given program works as intended for ILP32 and look
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upon the differences when compiling the same program
using a 64-bit data model.

If we compare ILP32 to LLP64 and LP64, as used by 64-
bit Windows and most 64-bit Unix systems, respectively,
we see that the type int is 32-bit wide for all three data
models. While for ILP32 this means that int and pointers
have the same width, on 64-bit data models int is only half
as wide as the pointer type. The same holds true for the
type longon LLP64. As a consequence, on both 64-bit data
models an int variable can no longer be used to address
the full range of memory. While there also exist other 64-
bit data models, such as ILP64 and SILP64, these are only
used on few platforms only and define the same width for
int, long and pointers, which renders migrating code less
problematic.

2.2 Effects of integer width changes

The difference in size of integers on 64-bit platforms in
comparison to 32-bit data models introduces previously
non-existent truncations and sign extensions in assign-
ments. Surprisingly, the migration to 64 bit may even
flip the signedness of comparisons and render checks for
buffer overflows ineffective. In the following, we discuss
each of these problems in detail.

2.2.1 New truncations

A truncation occurs when an expression is assigned to
a type narrower than that of the expression itself. Partic-
ularly noteworthy are those assignments that behave dif-
ferently between ILP32 and LLP64 or LP64, such as con-
versions from size_t to unsigned int or long to int.In
these cases, new truncations occur that are specific to the
migration process from 32-bit to 64-bit data models. In ad-
dition to these simple truncations, the migration of the
data model additionally introduces two vulnerability pat-
terns related to the handling of pointers.

Table 1: Widths of basic integer types in bytes for different data models and examplary operating systems making use of these [6, 9].

data model IP16 IP16L32 LP32 ILP32 LLP64 LP64 ILP64 SILP64
data type (PDP-11 Unix) (Win16) (Win32, Linux) (Winé4) (Linux) (HAL) (UNICOS)
pointer/size_t 2 2 4 4 8 8 8 8
short - 2 2 2 2 2 2 8
int 2 2 4 4 4 8 8
long - 4 4 4 4 8 8 8
long long - - 8 8 8 8 8 8
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Incorrect pointer differences. The length of a memory
region can be determined by subtracting pointers, return-
ing an integer of type ptrdiff_t, which has the same
width as a pointer. Unfortunately, it is common practice
to store such differences in a variable of type int. This is
unproblematic on all 32-bit platforms, since both types are
of the same size. However, on LP64 and LLP64 ptrdiff_t
is 64-bit wide, while the width of int remains unchanged,
which means that the difference is truncated to 32 bit and
thus may cause loss of information. Listing 1 shows an
exemplary vulnerability of this type. Compiling the code
produces no warnings, yet on 64-bit platforms, line 5 in-
troduces an integer truncation. The example shows a typ-
ical pattern for processing an input string str line-by-
line and determining a line’s length by the difference of
end and start pointers. If one input line exceeds 4 Giga-
byte in length, the variable 1len only stores the truncated
length as it is 32 bit wide. For instance, if MAX_LINE_SIZE
= 100 and eol - str = 0x1000000ff, len is truncated
to 0x000000ff and finally triggers a buffer overflow in
line 8.

char buf [MAX _LINE SIZE];
’\n’) ;

char *eol = strchr(str,

xeol = ’\07;

1
2
3
4
5 unsigned int len = eol - str;
6 if (len >= MAX_LINE_SIZE)

7 return -1;

8

strcpy (buf, str);

Listing 1: Example of a 64-bit migration vulnerability caused by
incorrect pointer differences.

Unfortunately, vulnerabilities of this type are supported by
the design of standard library functions, such as fgets,
fseek and snprintf, which receive or return size infor-
mation as type int and long. The common idiom of using
variables of type int to iterate over buffers further adds to
this problem (see Section 2.3.1).

Casting pointers to integers. Closely related are casts
from pointers to integers. While this programming pattern
is generally discouraged, casting pointers to int is un-
problematic on all 32-bit platforms, as pointers and inte-
gers have the same size. In contrast, on LP64 and LLP64
where pointers are 64-bit wide this practice leads to latent
pointer truncations [10]. These truncations are latent in the
sense that they go unnoticed as long as the pointers re-
fer to locations within the first 4 Gigabyte of the address
space. For these pointers, a truncation does not change
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their value as only preceding zeros are removed. Attackers,
however, may purposely increase the amount of memory
allocated by the program to ensure that pointers outside
this safe range are created. Still, these vulnerabilities are
rather rare and a successful exploitation is rendered diffi-
cult by address space layout randomization (ASLR) [1].

2.2.2 New signedness issues

Two types of integer signedness issues arise as code is
ported from 32-bit to 64-bit platforms. First, sign exten-
sions may occur as signed integers are converted to un-
signed types that have become wider than their ILP32
equivalents. Second, the signedness of comparisons po-
tentially changes, rendering checks to protect from buffer
overflows ineffective.

Sign extensions. When converting from one signed type
to another wider signed type, a sign extension is performed
for value preservation. Converting a signed type to a wider
unsigned type follows the same principle, but the result-
ing value is eventually interpreted as unsigned integer.
In effect, negative numbers are converted into large posi-
tive numbers, a possible source for vulnerabilities. For the
LLP64 data model, new sign extensions occur for conver-
sions from int and long to size_t and for LP64 from int
to unsigned longand size_t. From a security perspec-
tive, conversions tothe size_t type appear to be especially
fruitful when looking for vulnerabilities as the example of
the zlib vulnerability presented in the introduction demon-
strates.

Signedness of comparisons. Checks to ensure that
a buffer does not overflow are only effective if they cor-
rectly account for the signedness of the integers involved.
Typically, this means that all integers should be converted
to unsigned types prior to comparison. In many cases, ex-
plicit conversions can be omitted on 32-bit systems as in-
teger conversion rules ensure that the comparisons will
be performed unsigned. This, however, is not guaranteed
on 64-bit platforms anymore, bringing forth comparisons
that change their signedness when being ported. For in-
stance, a comparison involving long and unsigned int
is unsigned on both, ILP32 and LLP64, but signed on the
LP64 data model.

Listing 2 presents a corresponding vulnerability. An
attacker-controlled value is first stored in a long in-
teger named len on line 2, and then checked to en-
sure it does not exceed the buffer size BUF_SIZE on
line 4. Finally, 1en bytes are copied into the buffer. As
in the previous example, compiling this code produces

Brought to you by | Technische Universitat Braunschweig
Authenticated
Download Date | 5/3/18 8:00 AM



76 —— C.Wressnegger et al., 64-Bit Migration Vulnerabilities

const unsigned int BUF_SIZE = 128;

long len = attacker_controlled();

1

2

3

4 if(len > BUF_SIZE)
5 return;
6

memcpy (buffer, src, len);

Listing 2: A check to avoid buffer overflows on 32-bit systems that is
ineffective on LP64 platforms.

no warnings. Moreover, the comparison between len and
BUF_SIZE is unsigned on 32-bit data models. This is the
case because long and unsigned int have the same
width and therefore long cannot hold the full range of
unsigned int. Consequently, len gets reinterpreted as
unsigned value to conduct the comparison. For instance,
given len = -1 the comparison is performed unsigned as
Oxffffffff > 0x00000080. Although a reinterpretation
of the value occurs, the result still matches the developer’s
expectations.

In contrast, on LP64 the type long is 8 bytes wide,
while an unsigned int is only 4 bytes wide. There-
fore, a variable of type long can hold the full range
of an unsigned int, and a signed comparison is per-
formed. This is problematic, as the check in line 4
can be bypassed by supplying a negative value, for in-
stance -1, for len. When copying data on line 6, this
value is sign-extended and interpreted as unsigned inte-
ger, OxffffFfFfEFEFEFEF, resulting in a buffer overflow.

2.3 Effects of a larger address space

In addition to flaws that result from changes in integer
widths, code running on 64-bit platforms has to be able to
deal with larger amounts of memory as the size of the ad-
dress space has increased from 4 Gigabytes to several hun-
dreds of Terabytes. In effect, the developer can no longer
assume that buffers larger than 4 Gigabytes cannot exist
in memory. As a result, additional integer truncations and
overflows emerge, which do exist on 32-bit data models in
the first place, but cannot be triggered on the correspond-
ing platforms in practice.

2.3.1 Dormant integer overflows

A security-relevant integer overflow cannot be detected by
reasoning about the types of variables alone. Instead, the
range in which these variables operate also needs to be
considered. A larger address space allows (a) larger ob-
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jects to be created and (b) a larger number of objects to
be used. Thus, code that performs arithmetic operations
on the sizes or number of objects with variables narrower
than that of pointers become candidates for integer over-
flows on 64-hit platforms.

unsigned int 1i;
attacker controlled();

malloc(len);

size_t len =

char *buf =

for(i = 0; 1 < len; i++) A

*buf++ =

1
2
3
4
5
6 get_next_byte();
7

Listing 3: Buffer overflow resulting from an integer overflow due to
larger strings on 64-bit platforms.

Listing 3 provides an example of an integer overflow
resulting from large objects, which also does not trig-
ger a compiler warning. For LP64 and LLP64, the type
unsigned int is narrower than size_t. Thus, if the
attacker-controlled value 1en is larger than UINT_MAX, the
loop-variable i can never attain a value greater or equal
to len as it would first overflow and eventually result in
aloop that endlessly copies data into the buffer. Platforms
using ILP32, however, are not affected since SIZE_MAX
equals UINT_MAX — in other words, the loop terminates be-
fore i overflows.

2.3.2 Dormant signedness issues

In addition to truncations, signedness issues may also lie
dormant in existing code and become exploitable as the
size of the address space grows. A common occurrence
of such dormant signedness issues is the practice of as-
signing the result of strlen to a variable of type int.
For strings longer than INT_MAX, this results in a negative
length. However, on 32-bit platforms, exploiting this type
of flaw is deemed unrealistic due to the restricted amount
of memory available [5, Chp. 18 pp. 494]. On 64-bit plat-
forms, however, strings of this size can be easily allocated
by a single process, making it possible to trigger these dor-
mant signedness issues.

Listing 4 shows a corresponding vulnerability. The
length of the attacker-controlled string is determined us-
ing strlen and is assigned to a variable of type int. If
the attacker controlled input is larger than INT_MAX but
smaller than UINT_MAX, the value stored in len is mis-
takenly interpreted as a negative number and the check
in line 4 is rendered ineffective. As len is subsequently
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passed to memcpy, it is sign-extended and interpreted as
unsigned int, causing a buffer overflow in line 6.

char buffer[128];

int len = strlen(attacker_str);

1

2

3

4 if(len >= 128)
5 return;
6

memcpy (buffer, attacker_str, len);

Listing 4: Buffer overflow caused by the common pattern of
assigning the result of strlento an int.

2.3.3 Unexpected behavior of library functions

Several standard C library functions have been originally
designed with 32-bit data models in mind and thus become
vulnerable to truncations, overflows or signedness issues.
Although some of these functions have been adapted to
64-bit data models, developers are often not aware of the
changed functionality.

String formatting. Functions for printing strings, such as
fprintf, snprintf and vsnprintf have been designed
with the assumption that strings cannot be longer than
INT_MAX. While this assumption is reasonable on 32-bit
platforms, it does not hold true for 64-bit data models.
Let us, as an example, consider snprintf, which writes
a string to a buffer s according to a format string fmt.

int snprintf(char *s,

size_ t n, const char *fmt, ...)

The function copies at most n bytes and returns the num-
ber of bytes that would have been written. On 64-bit plat-
forms the expanded format string, however, may be larger
than INT_MAX, making it impossible to return its size as an
int. In this case the C99 standard demands that snprintf
returns a fixed value of —1 [4, Sec. 7.19.6]. In practice, this
can result in vulnerabilities when programmers directly
make use of the return value to shift pointers. Listing 5
exemplarily shows a vulnerable implementation of a log
function that writes messages to a global buffer of BUF_LEN
+ 1 bytes in size.

The log function returns —1 once the return value
of snprintf has exceeded the overall size of the buffer
(line 7-9). Specifying an input string longer than INT_MAX,
which is easily possible on 64-bit platforms, results in
snprintf returning —1 on line 5 — irrespective of the max-
imal number of bytes allowed to write. This bypasses the
check on line 7 and subtracts from the index variable pos,
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causing it to underflow. A subsequent call to 1og then cor-
rupts the stack memory.

1 int pos = O;

2 char buf [BUF_LEN+1];
3

4 int log(char *str) {

int n = snprintf(buf+pos, BUF_LEN-pos, str);

pos = BUF_LEN;

5

6

7 if (n > BUF_LEN-pos) {
8

9 return -1;

10}
11 return (pos += n);
12 }

Listing 5: Stack-corruption vulnerability on 64-bit systems due to
unexpected behavior of snprintf.

File processing. Similar to the printf family of functions,
the standard C library functions for processing files, such
as ftell, fseek and fgetpos, are not designed to deal
with the effects of 64-bit integer numbers, particularly,
files larger than 4 Gigabyte. This problem is well known
and is addressed by the introduction of 64-bit aware coun-
terparts, ftello, ftello64 or __ftelli64. However, our
empirical study shows that ftell still is widely used in-
stead of the better alternatives (see Section 3). Further-
more, the function ftell exhibits an undocumented be-
havior when confronted with large files. It is specified to
return the current position of a file pointer as value of
type long, which is 32 bit wide on platforms using the
LLP64 data model. While the C99 standard specifies a re-
turn value of —1 for failures [4, Sec. 7.19.3], the Microsoft Vi-
sual C++ Runtime Library’s implementation returns 0 if the
current position exceeds LONG_MAX (Oxffffffff), which
gives rise to security problems.

Listing 6 shows an exemplary vulnerability in a piece
of code that reads a file of hexadecimal values encoded in
textual form (e.g., 303132 ...) and stores it as decoded
bytes in a buffer buf. To this end, the code first determines
the file’s size by seeking to its end and obtaining the file
position using ftell (line 4-6). Finally, the byte values
are written to the buffer by iteratively calling fscanf until
EOF is reached (lines 10-12). On Microsoft Windows 64-bit
avulnerability can be triggered using files larger than 4 Gi-
gabytes, as the call to ftel1 returns zero and only one byte
is allocated for the buffer (line 8). In effect, the copy loop
corrupts the heap by writing the complete file to memory
not allocated by the process.
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1 int 1i;

2 char *buf;

3

4 FILE* const f = fopen(filename, "r");
5 fseek(f, 0, SEEK_END);

6 const long size = ftell(f);

7

8 buf = malloc(size / 2 + 1);

9

10 fseek(f, 0, SEEK_SET);

11 for (; fscanf(f, "%02x", &i) != EQOF; buf++)
12 sbuf = 1i;

Listing 6: Buffer overflow for files larger than UINT_MAX caused by
unexpected return value of ftell.

3 Empirical study

We proceed to analyze how wide-spread 64-bit migration
issues are in today’s software. To this end, we conduct two
empirical experiments. First, we assess the prevalence of
problematic type conversions in general, considering all
implicit conversions that may alter a value during assign-
ments or in expressions (Section 3.1). Second, we refine
our search and automatically look for programming pat-
terns that are characteristic for 64-bit migration flaws (Sec-
tion 3.2).

3.1 Implicit type conversions

In this experiment we study how often type conversions
potentially go wrong. To this end, we inspect all 198 source
packages from Debian stable (“Jessie”, release 8.2) tagged
as either Required, Important or Standard and are written
in the C/C++ programming languages. We compile each
package on Debian 32-bit and Debian 64-bit and inspect
all warnings raised.
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On request, GCC, LLVM’s clang, and other compilers
emit warnings when an assignment, arithmetic operation
or a comparison is applied to operands of incompatible
integer types and an implicit conversion is required. Fre-
quently, these compiler flags are however not used due to
the sheer amount of warnings potentially raised in prac-
tice [7]. As a matter of fact, we find that none of the 198
Debian packages uses one of these flags. For our study
we hence explicitly add: -Wconversion for width con-
version, -Wsign-conversion for changes in signedness,
-Wsign-compare for comparisons of signed and unsigned
types and -Wfloat-conversion for conversions that in-
volve a loss in floating point precision. Table 2 summa-
rizes the results. For each conversion type we list the to-
tal count of warnings raised by the compiler on the 64-
bit system per package and especially highlight warnings
that have emerged from the migration process. We find
that the vast majority of warnings are width and sign con-
versions with 442 and 259 warnings per package, respec-
tively. Especially, the conversion from size_t to int and
vice versa appears to be problematic in practice, spawn-
ing 21 527 warnings in core packages of Debian stable.
All these warnings are exclusive to 64 bit and do not oc-
cur on 32-bit platforms. By contrast, sign comparisons only
slightly increase due to the 64-bit migration. However, in
line with the examples given in Section 2.2.2 migration vul-
nerabilities often occur on 64-bit platforms due to com-
parisons that remain signed rather than being implicitly
converted to unsigned. Hence, the amount of warnings re-
solved in comparison to a 32-bit platform has to be taken
into account as well, such that in total 15% of the warnings
can be considered critical.

3.2 Patterns of 64-bit migration issues

Of course, not all implicit conversions indicate a bug or
even a vulnerability. We hence narrow down this vast
amount of suspect locations by specifically looking for

Table 2: Number of implicit type conversions per package on 64 bit. The first value denotes all warnings raised, the value in brackets the
amount that is exclusive to 64 bit and that does not occur on 32-bit systems.

Debian stable

Average per package

Category # packages -Wconversion -Wsign-conversion -Wsign-compare -Wfloat-conversion
Required 53 576 (334) 1009 (216) 18 (2) 5 (1)
Important 56 738 (437) 976 (269) 33 (1) 10 (0)
Standard 89 913 (510) 993 (279) 28 (1) 3 (1)
* 198 773 (442) 993 (259) 27 (1) 5 (1)
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Table 3: Number of specific patterns for 64-bit migration issues in source packages of Debian stable (“Jessie”, release 8.2) and 200 popular

C/C++ projects hosted on GitHub, relative to their absolute usage.

Code-base P1:atol P2: memcpy P3: loops P4: strlen P5a: snprintf P5b: ftell
Debian Jessie 21.49% (133) 7.76% (2536) 8.47% (1264) 13.85% (7595) 27.55% (762) 64.74% (628)
GitHub 18.66% (25) 15.19% (2918) 12.56% (658) 22.54% (3572) 34.79% (502) 85.05% (182)
Average 20.98% (158) 10.51% (5454) 9.53% (1922) 15.80% (11 167) 30.03% (1264) 68.41% (810)

code patterns that may cause unintended operations on
64-bit platforms. To this end, we make use of techniques
from control-flow and data-flow analysis to model specific
patterns of 64-bit migration issues. In particular, we char-
acterize patterns from the 5 categories presented in Sec-
tion 2 on the basis of practical examples and count the oc-
currences of these in two code bases: we again consider
the packages from Debian stable described in the previous
section and additionally examine the 200 (at the time of
writing) most popular C/C++ projects on GitHub. Table 3
summarizes our findings.

21% of all calls to function atol are assigned to a vari-
able of type int instead of long, causing a truncation
on 64-bit systems (P1). Also, developers frequently pass
signed integers of type int to function parameters defined
as size_t. In case of the memcpy function and its param-
eter for specifying the number of bytes to copy, roughly
10% of the calls are used incorrectly, allowing for the ma-
licious use of implicit sign-extensions (P2). Our pattern
modeling integer overflows induced by simple for loops
reveals that 9.5% increment an int variable although the
loop-counter is specified as size_t (P3). 15% of all calls to
strlenare falsely assigned to a variable of type int rather
than size_t (P4). Finally, the snprintf and ftell func-
tions are incorrectly used and their results insufficiently
checked in 30% and 70% of all cases, respectively (P5a &
P5b). For more details on these results and the methodol-
ogy used please refer to [13].

In summary we observe that projects included in De-
bian appear to exhibit less such patterns for 64-bit migra-
tion flaws than the projects retrieved from GitHub — the ab-
solute number however suggests a significant potential for
misuse.

4 Discussion

Ideally, flaws induced by migrating from 32-bit to 64-bit
platforms are addressed by thorough code audits that
specifically focus on problematic type conversions and re-
lated code patterns. Our study however suggests that this

currently is not put into practice effectively and shows that
vulnerabilities resulting from the migration process are
still a major issue.

While a thorough understanding of the underlying is-
sue, as provided by this and similar articles [2, 8, 9, 12, 13],
and the awareness for this particular aspect of software se-
curity is a key stepping stone, we believe that the current
prevalence of such flaws reflects the lack of tools assisting
the detection but also the development process.

Improved error reporting. As demonstrated in Sec-
tion 3.1 even well-reviewed code from mature projects
contains a multitude of type-conversion warnings. C/C++
projects from Debian stable tagged as Required, Impor-
tant or Standard spawn 1798 warnings related to different
kinds of conversions on average, 703 of which are exclu-
sive to the migration to 64-bit platforms. Whether or not
these express actual flaws or even security issues is un-
clear. It, however, appears that those that actually are se-
curity flaws, get lost in the sheer amount of warnings. Pre-
sumably for this exact reason, none of the inspected De-
bian packages makes use of the -Wconversionflag and in
doing so, turns a blind eye on these issues.

Factoring out the functionality of GCC’s
-Wconversion flag that concerns data types that have
changed in size due to migration to 64-bit platforms to
a separate flag as deployed in IBM’s XL compiler [3], for
instance, is a valuable first step. Such an additional flag
can then be issued individually or automatically set on
specifying -Wconversion to preserve the current func-
tionality of the compiler. Although, this already reduces
the amount of warnings by 60%, the absolute number of
warnings in complex software projects might still be too
large to be handled at once.

Making use of data that arise from program analysis
already employed by compilers, can be used to restrict
warnings to more specific situations, as for instance, the
lack of some sort of check on values for which a conver-
sion warning is issued. In case of the examined Debian
packages this would reduce the number of warnings by ad-
ditional 95% to merely 30 instances. However, such analy-
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ses come at a computational cost that often does not fit the
requirements of a performance-oriented compiler frame-
work.

5 Conclusion

In this article, we categorize and review vulnerabilities
made possible by the migration to 64-bit platforms. We
provide a high-level reference as well as minimal work-
ing examples for practitioners and show the prevalence
of such vulnerabilities in mature and well-tested software.
For example, to a large extend developers appear to unjus-
tifiably treat the unsigned type size_t and (unsigned) int
as equal, leading to in total 21 527 warnings in Debian sta-
ble. Moreover, we look for particular patterns of 64-bit mi-
gration flaws to refine our findings on implicit type conver-
sions. For instance, 10% of all invocations to the memcpy
function in the inspected Debian and GitHub projects, are
called with a signed value of 32-bit in size rather than the
64 bit wide size_t as parameter for the number of bytes
to copy. Based on our findings we additional motivate fur-
ther directions of research to better address 64-bit migra-
tion vulnerabilities.
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